てすたす

あああああ

$$
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \
a_{21} & a_{22} & \cdots & a_{2n} \
\vdots & \vdots & \ddots & \vdots \
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
$$

っててt

[100000000000000010000000000000001000000000000000100000000000000010000000000000001000000000000000100000000000000010000000000000001000000000000000100000000000000010000000000000001000000000000000100000000000000010000000000000001]\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
a+b++z26=A+B++Zuppercase\overbrace{a + b + \cdots + z}^{26} = \underbrace{A + B + \cdots + Z}_{\text{uppercase}}
x=a0+1a1+1a2+1a3+1a4x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4}}}}
a+b++z26=A+B++Zuppercase\overbrace{a + b + \cdots + z}^{26} = \underbrace{A + B + \cdots + Z}_{\text{uppercase}}
(a+b)3=(a+b)(a+b)2=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3\begin{aligned} (a+b)^3 &= (a+b)(a+b)^2 \\ &= (a+b)(a^2 + 2ab + b^2) \\ &= a^3 + 3a^2b + 3ab^2 + b^3 \end{aligned}
f(x)=f^(ξ)e2πiξxdξ\color{red}{f(x)} = \color{blue}{\int_{-\infty}^{\infty}} \color{green}{\hat{f}(\xi)} \, e^{2 \pi i \xi x} \, d\xi
V最大=100[V]V_{\text{最大}} = 100 \, \text{[V]}
μ平均=1ni=1nxi\mu_{\text{平均}} = \frac{1}{n} \sum_{i=1}^{n} x_i

コメント